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Entropy of Systems with Internal Variables 1 

E. F. Lype 2 

Two entropy functions are currently in use: the thermostatic entropy, defined by 
Carath~odory's theory, and the thermodynamic entropy, defined by the theory 
of irreversible processes. Both entropy concepts are confined to systems without 
internal variables, and both can be shown to be equal by substituting the 
respective balance of internal energy to which they are related by the integrating 
factor, 1/0. When irreversible internal phenomena are present, represented by 
internal coordinates and their conjugate affinities, they become part of the 
entropy production, but not of the energy balance, and the two entropies are no 
longer equal. It has been shown in the literature that by multiplication by a 
second integrating factor, an extended entropy function for systems with inter- 
nal variables can be derived. It is the purpose of this paper to present a method 
for the determination of this integrating factor. Under certain conditions, the 
latter may be unity; such is shown to be the case with the Gibbs equation for 
gas mixtures. 

KEY WORDS: entropy; Gibbs equation; internal variables; thermodynamic 
theory. 

1. I N T R O D U C T I O N  

The present work deals with the entropy of such thermodynamic bodies 
whose state can be described by an empirical temperature, by a set of 
deformation coordinates with their conjugate stresses, and by a set of inter- 
nal coordinates with their conjugate affinities. The latter ones are not for- 
ces; therefore, displacements of the internal coordinates do not require 
work input, and the resulting action does not appear in the balance of 
internal energy. That, however, makes that action irreversible, which 
results in a contribution to the entropy production. 
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This study is confined to systems which are not history dependent; in 
that case, the entropy can be calculated within the framework of classical 
thermostatics, combined with classical nonequilibrium thermodynamics. It 
has been shown by Edelen [1] that the extension of this entropy concept 
to systems with internal variables requires the introduction of a second 
integrating factor; that idea is followed in this paper. 

Note that repeated indices always signify summation. 

2. THE T H E R M O S T A T I C  E N T R O P Y  

The balance equation for the thermostatic part, u', of the internal 
energy in the presence of heat input, dq/dt, and work input, dw/dt, into a 
body of density p yields the rate of change of u' as 

where 

and 

dw &' @q (1) - - = - -  

dt dt dt 

da _ 1 
vv.~ = Q _ _  d ivJ  q (2) 
dt p 

dw de) d o (3) 
dt dt dt 

where Q is the scalar heat source, Jq is the heat flux, co is the equilibrium 
work, and ~b is the viscous work. When the energy balance is written in the 
form dB/dt = 0, the latter becomes 

dr--- L - ~ -  +-dt + d~ =0  (4) 

In the limit of a nonviscous adiabatic process, this yields 

lim ( d B ) _ d u '  de) 0 (5) 
@ / &  , O d~/dt , 0  & dt dt 

When the equilibrium work can be represented by 

de) = - X i  dxi (6) 

and when Xi and u' are given by the constitutive equations of ther- 
mostatics, 

x ,  = 2 , ( o ,  xl  ""  xm) (7) 
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and 

u'=~'(O, xl""xm) (8) 

where O is the empirical temperature, the x i are the deformation coor- 
dinates, and the Xi are the equilibrium stress components, then Eq. (5) 
becomes 

(0., ) ----odO+\Sxiq-Xi dx i=0  (9) 

This Pfaffian equation represents the nonviscous adiabatic process, which 
is associated with the viscous, nonadiabatic energy balance, Eq. (4). 

Starting from an initial point P'(O',x'I"''Xm), only those dis- 
placements of the coordinates correspond to a nonviscous adiabatic 
process which are compatible with Eq. (9), i.e., only those points P" are 
accessible from P' which can be reached by steps dO, dx ldx ,~ ,  which 
satisfy Eq. (9). The fact that Eq. (9) was obtained as the limit of a viscous, 
nonadiabatic process indicates that infinitely close to point P', there are 
also points which can be reached only by processes which are either dis- 
sipative, nonadiabatic, or both. In other words: infinitely close to P' there 
are points which are inaccessible by displacements satisfying Eq. (9). 

Under these conditions, Carath6odory's inaccessibility principle [2] 
states that the inexact differential Eq. (9) can be made exact by mul- 
tiplication by an integrating factor. Thus, the (~') independent integrability 
conditions of Eq. (9), 

ax,/ +xk +x '  N =~ (10) 

are guaranteed to be satisfied; these conditions now become constraints 
upon the constitutive Eqs. (7) and (8), which the latter ones have to satisfy 
in order to be compatible with the laws of thermostatics [3]. Systems 
whose constitutive equations obey these constraints are called "ther- 
modynamic bodies." Details of the method are given in Ref. 3, where it is 
also shown that the reciprocal of the integrating factor, called here the 
"thermostatic temperature," T', is 

r'=O (11) 

of Eq. (5) yields a surface through P' in the Thus, the integration 
(0, x l""  x,~) space, 

s= f du'-d o (12) 
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where s(O, X'I"''X'm) is the constant of integration, called here "ther- 
mostatic entropy." This entropy concept is defined for equilibrium states 
only. 

A transition between two surfaces of constant thermostatic entropy is 
given by 

ds du' de) 
O - - =  # 0  (13) 

dt dt dt 

From Eqs. (1) and (3) is obtained 

du' dc~=dq +~t (14) 
dt dt dt 

Therefore, the laws of thermostatics yield 

ds dq d(J (15) 
O 7=--dT + d-- 7 

i.e., the transition is either nonadiabatic, dissipative, or both. It is reversible 
only in the case where the heat input is due to a scalar heat source Q (Car- 
not cycle) and where no dissipation occurs. It is assumed in the following 
that (~ = 0. 

3. THE THERMODYNAMIC ENTROPY 

A different entropy concept, r/, is defined by the entropy balance 
equation, according to which the rate of entropy increase is equal to the 
sum of entropy flux, entropy source 6, and entropy production 9; it is 
called here "thermodynamic entropy": 

& 
p-~-= -d iv  ar~+ d + 9 (16) 

where 
Jq js = _ (17) 
O 

is the preferred approximation for the entropy flux. 
In the absence of internal variables, the entropy source is zero, and the 

entropy production for heat and work input according to Eqs. (2) and (3) 
is 

1 p de (18) 
~0 = J q "  grad b + O  d t  
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Substituting Eqs. (2), (17), and (18) into Eq. (16) gives 

0 - ~ o  = +dt  

or, from Eq. (14), 

(d~)  _ du' do (20) 
O --~ o dt dt 

Comparing Eqs. (19) and (20) with Eqs. (13) and (15) shows that, in the 
absence of internal variables, the thermostatic entropy and the ther- 
modynamic entropy are quantitatively equal. However, the definition of ~/ 
is not restricted to equilibrium states. 

4. THE E X T E N D E D  E N T R O P Y  

When the state of a system depends also on internal coordinates ~ 
and their conjugate affinities As, then the internal energy u becomes depen- 
dent on the ~ ,  such that the constitutive equation is of the form 

whence 

u = ~(O, xi; ~ )  (21) 

Ou c~u Ou 
du = - ~  dO +-~x~ dx' + ~ 7 d~  (22) 

Thus, the change of internal energy of such a system consists of an external 
energy transfer 

du'= Ou dO Ou ~0 +-~x~ dxi (23t 

and of output by an internal energy source 

~u 
du"= ~ dr (24) 

For such systems, u takes the place of u' in the energy balance Eq. (1), 
whence in view of Eq. (3), 

_ de) dO du dq ~_ (25) 
dt dt --d[ + d7 
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The action A~(d~o]dt) of the internal variables does not enter into the 
energy balance, but it does enter into the entropy production, which 
becomes 

P ~t A~d~= 
7 = J q ' g r a d l + o  + P 0 dt (26) 

while the energy source appears in the entropy balance as an entropy 
source, 

p du" 
6-- 

0 dl 

o r  

p 0u d~= 
6- - (27) 

08~= dt 

The example of Eq. (67) shows clearly that this term is of the nature of a 
source. 

Substituting Eqs. (26) and (27) into Eq. (16) gives, after algebraic 
transformation of the divergence term, and substituting Eq. (2) with Q = 0, 

0 dq+dt + A ~ - - ~  dt 

Substituting Eq. (25) gives 

d~l du Ou d~ d~o d~= 
O - k A = - -  (28) 

dt dt ~= dt dt dt 

Substituting Eqs. (22), (23), and (13) gives r/as a function of s and r 

tin ds A=aG 
- t- ( 2 9 )  

dt dt 0 dt 

The internal variables, A= and r are not necessarily physically con- 
trollable. 

In the presence of internal variables, the two entropies, s and q, are no 
longer equal. Furthermore, while ds is an exact differential, dr/ is not, 
except in the case where the exactness condition 

(30) 
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is satisfied. Since (c?tl/c~s),~ = 1, this requires, in view of Eq. (29), that in this 
special case 

0s = 0  (31) 

i.e., A~/O must be a function of one or more of the ~ alone. That impor- 
tant case is discussed in Section 8, 

In the case where Eq. (30) is not satisfied, a second integrating factor 
N (s, 41"'" ~,) can be found which converts the differential Eq. (29) into an 
exact differential of the extended entropy, r, for systems with internal 
variables; the latter is defined as 

By introducing the "reduced affinity" 

(32) 

, A~ 
A~ =-~- (33) 

Eq. (32) can be written 

dr = N(ds + A'~ d ~ )  (34) 

5. T H E  I N T E G R A T I N G  F A C T O R  

The Pfaffian differential equation associated with Eq. (34) is 

d s + A ; d ~ = O  (35) 

where ds is given by Eq. (15). When at a given point P' all displacements 
d ~  are chosen, then Eq. (35) determines ds, which by virtue of Eq. (15), 
determines dq + dO. Thus, only such irreversible processes are admissible 
where the sum dq + d(9 satisfies Eq. (35). Any other process would lead to 
points in the s, ~ space which are inaccessible from P' by means of 
Eq.(35). Therefore, the inaccessibility principle is applicable, the 
integrability conditions are satisfied, and the integrating factor N exists. 

The irreversible process Eq. (35) can now be represented in the 
(n + 1)-dimensional (s, ~1 ' "  ~,) space. 

When there is a single internal coordinate, the extended entropy is 
given by Eq. (34) as the exact differential equation 

dr = N(ds + A' d~) (36) 



118 

with the exactness condition 

or 

with the boundary condition 

for ~ = const: N =  1, 

Therefore, the differential equation for N is 

= 

The integral is 

Lype 

(37) 

ON) = (38) 0 

(39) 

0A] 0A; ,~ 
d(ln N ) = - ~ - s  d~, +-~-s  (/~2 -1- " ' "  

Integration gives the integrating factor as 

N = e ~A'~/~ d~ (43) 

where the constant of integration is taken as 1, according to the boundary 
condition Eq. (38). Equation (43) is to be substituted into Eq. (34). 

or, from Eq. (39), 

N = (p ( s )e  f,oA'/& d~ (40) 

From the boundary condition Eq. (38) follows q)(s)= 1. Therefore, 

N = e ~A'/~162 (41) 

and 

dr = e ~A'/~ (ds + A '  d~) (42) 

When n pairs of internal variables A'~, ~ are given, the total differential of 
In N is, on account of Eq. (38), 

d(ln N )  = O ln N d~ l O l n N  
0r q- ~ dr + " "  
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6. T HE  C O N S T R A I N T S  O N  T H E  C O N S T I T U T I V E  E Q U A T I O N  
F O R  T H E  A F F I N I T I E S  

Since the inaccessibility principle guarantees that the integrability con- 
ditions of Eq. (35) are satisfied, these conditions must be considered as 
constraints on the constitutive equations for the affinities A'= in the 
(s, ~ 1 "  ~n) space where 

t ~ t  A= = A=(s, ~1"'" ~n) (44) 

With a in Eq. (35) having values from 1 to n, there are (~) independent 
integrability conditions. These are 

a{, O~kJ + A'k-~--s--A,--~--S )=O (45) 

According to Eq. (15), the processes which cause a change in s arc indepen- 
dent of those which bring about a change in the internal coordinates. Thus, 
the derivatives of A' with respect to ~ are independent of those with respect 
to s, and each of the two parentheses in Eq. (45) must be taken as zero 
independently. 

This results in the following equations: 

8A~ 8A~ (46) 
A't-~-s = A'k 8s 

o r  

81nA2 81nA~ 
- - -  (47) 

8s 8s 

and 

8A~, c3A~ (48) 
a~l 8~k 

Equation (47) shows that the derivatives with respect to s must be equal to 
a common function E for every k or l, i.e., for every ~ there is 

8 in A'~ 
8s =E(s, 41"~n) (49) 

The function E must be determined for each system individually. Equations 
(48) and (49) are the constraints to which the constitutive Eqs. (44) are 
subjected. Only those functions .4'~ are thermodynamically admissible 
which comply with these constraints. 



120 Lype 

The differential of Eq. (34) must be exact for all affinities A'~ com- 
patible with the constraints given by Eqs. (48) and (49). It is now shown 
that Eq. (34) combined with Eq. (43) does indeed satisfy both the n 
exactness conditions containing the derivatives with respect to s, 

(5o) 

and the (2) exactness conditions without derivatives with respect to s, 

In view of Eqs. (34) and (38), Eq. (50) can be written 

0N 0A'~ 
- - - N  - -  (52) 
0 ~  0s 

These n conditions are satisfied by Eq. (43) for any function A'~. 
In view of Eq. (34), Eq. (51) can be written 

(OA~ OA'k~ ON , ON (53) 
N \ O~k 04, } = A '~ -~ t -  A'  O~k 

According to Eq. (48), the left side is zero; therefore, 

0N , ON 
A 'k -~l = A t O ~ k 

Substituting Eq. (52) gives 

0A~ ,, 0A~ 
A;~--s = A , ~ (54) 

These (g) conditions are satisfied by Eq. (46). Therefore, for systems with 
internal variables, the entropy concept must be extended by including the 
second integrating factor, N. 

The constraints given by Eqs. (48) and (49) restrict the constitutive 
equations for the affinities to types whose derivatives possess a certain sym- 
metry. Considering that A~ d ~  represents energy, A s must include the fac- 
tor RO, where R is the gas constant. The simplest example for such a con- 
stitutive equation is, is terms of A'~, 

A ' ~ = R f ' ( ~ ) { l + f l g ( s ) [ f ( ~ l ) + "  �9 " + f ( ~ ) + " "  +f(~n)]}  (55) 
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where f({~) abd g(s) are dimensionless functions, defined by the system in 
question. The factor fi is an empirical constant. Differentiation according to 
Eq.(49) yields 

01n A'= 
~s 

f lg ' ( s ) [ f ( { , )+ "'" + f ( ~ ) +  "'" + f ( ~ . ) ]  
1 + f lg ( s ) [ f ( { l )+  "'" + f ( {=)+  "'" + f ( { , ) ]  

(56) 

which satisfies the constraint given by Eq. (49). The differentiations of 
Eq. (55) with regard to the internal coordinates yields 

~A~ 0A~ 
- - f l R g ( s ) f ' ( { k ) f ' ( { l ) =  (57) 

which satisfies the constraint given by Eq. (48). 
For the example of Eq. (55) it can now be verified that the derivations 

of A'~ with respect to s are, as stipulated in the discussion of Eq. (45), 
indeed not solely dependent on the derivatives with respect to 4. Combin- 
ing Eqs. (55), (56), and (57) yields the following relation between the terms 
occurring in the integrability condition given by Eq. (45): 

aA'k aA'kRg'(s) A'k ( A ' k  1) (58) 
A~ Os' - a{~ flg2(s~) Rf'(~k~ \Rf'({#) 

7. THE FREE E N E R G Y  

For a system with internal variables, a "thermodynamic temperature" 
is defined as 

O 
T = - -  (59) 

N 

with N given by Eq. (43). Then, a function ff can be defined which has all 
the properties of a "free energy" [ 1 ]: 

O( T, xg, ~ )  = u ' -  Tr (60) 

with r given by the differential Eq. (32). From Eqs. (60), (13), (6), (59), and 
(32) follows 

dt~ = - r  d T -  Xi d x i -  A~ d ~  (61) 

whence 
~, aO a~ 
0--~= - r ;  --Ox, = -Xi ;  c ~  - -A~ (62) 
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Further, 

and from Eq. (32), 

0 O~b Or 

Since Eq. (61) is an exact differential, it follows that 

OTJx,~-  T 

Lype 

(63) 

v k - ~ (65) 

i.e., uk takes the place of u' in Eq. (23), and Eq. (6) becomes the work of 
compression, 

& o  = - p  dv 

where p is the pressure and v is the volume of 1 mol mixture. The depen- 
dence of the internal energy on the internal coordinates is, from Eq. (64), 

The entropy source becomes, according to Eqs. (27), (65), and (66), 

p dvk 
d = - ~ u~ ~ (67) 

where 

u = v~uk(O, v) (64) 

8. GAS MIXTURES 

An example for a system with internal variables is a gas mixture, 
where the composition changes irreversibly through diffusion or chemical 
reaction. Since neither of these processes requires work input, the mole 
ratios vk correspond to the internal coordinates ~ ,  and the mixing 
entropies correspond to the reduced affinities A'~. In such a mixture, the 
internal variables are controllable. 

The internal energy per mole of mixture is 
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In the above notation, Eq. (28) becomes 

dt 1 du dv dv k (68) 
O--~=--~+ P--~ - ( u ~ - A k )  dt 

The chemical potential is defined as [4] 

It can be seen from Eq. (68) that 

Therefore, 

#k = Uk -- Ak 

and Eq. (68) becomes the "Gibbs equation" for gas mixtures, 

0 dtl du dv dv k (69) 
d--i : d--i + p Z - d-Z- 

Differentiating Eq. (64) and substituting into Eq. (68) gives 

dtl du k dv dv k (70) 
O--~=v~--~+ P ~  + Ak dt 

From classical thermodynamics it follows [4] that ~ Ak dVk is the mixing 
entropy multiplied by O: 

Ak=O(O-~Vk) =- -RO(I+lnVk)  (71) 

This is a special case of Eq. (55) where fl= 0, and f ' ( r  - ( 1  + In ~). 
The reduced affinity for gas mixtures now becomes 

A'~ = - R  (1 +ln vk) (72) 

where 

~a ~ Vk 

Therefore, in this special case where A'~ is a function of ~ alone, there is 

aA' =0 
~s 
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and from Eq. (43), 

N = I  

i.e., dr/in Eqs. (69) and (70) is already an exact differential, and no second 
integrating factor is needed. This is an example of the case mentioned in 
Eq. (31). 

The function E in Eq. (49) can now be calculated for a gas mixture 
where/~ = 0. In that case, Eq. (56) gives the trivial result 

E = 0  (73) 

Since, for gas mixtures, A'~ depends only on its conjugate ~ ,  the constraint 
given by Eq. (48) yields the trivial identity 0 = 0. 
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